Login

Lost your password?
Don't have an account? Sign Up

Stock Market Prediction Using Microblogging Sentiment Analysis and Machine Learning

The use of Machine Learning (ML) and Sentiment Analysis (SA) on data from microblogging sites has become a popular method for stock market prediction. In this work, we developed a model for predicting stock movement utilizing SA on Twitter and StockTwits data. Stock movement and sentiment data were used to evaluate this approach and validate it on Microsoft stock. We gathered tweets from Twitter and StockTwits, as well as financial data from Finance Yahoo. SA was applied to tweets, and seven ML classification models were implemented: K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF) and Multilayer Perceptron (MLP). The main novelty of this work is that it integrates multiple SA and ML methods, emphasizing the retrieval of extra features from social media (i.e., public sentiment), for improving stock prediction accuracy. The best results were obtained when tweets were analyzed using Valence Aware Dictionary and sEntiment Reasoner (VADER) and SVM. The top F-score was 76.3%, while the top Area Under Curve (AUC) value was 67%.

Download here

Author: Paraskevas Koukaras ,Christina Nousi and Christos Tjortjis

School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece

Academic Editor: Markos G. Tsipouras

author avatar
Editorial1