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Background: Over the last decade, we have observed in microbial
ecology a transition from gene-centric to genome-centric analyses.
Indeed, the advent of metagenomics combined with binning methods,
single-cell genome sequencing as well as high-throughput cultivation
methods have contributed to the continuing and exponential increase
of available prokaryotic genomes, which in turn has favored the
exploration of microbial metabolisms. In the case of metagenomics,
data processing, from raw reads to genome reconstruction, involves
various steps and software which can represent a major technical
obstacle.

Methods: To overcome this challenge, we developed SnakeMAGs, a
simple workflow that can process Illumina data, from raw reads to
metagenome-assembled genomes (MAGs) classification and relative
abundance estimate. It integrates state-of-the-art bioinformatic tools
to sequentially perform: quality control of the reads (illumina-utils,
Trimmomatic), host sequence removal (optional step, using Bowtie2),
assembly (MEGAHIT), binning (MetaBAT2), quality filtering of the bins
(CheckM), classification of the MAGs (GTDB-Tk) and estimate of their
relative abundance (CoverM). Developed with the popular Snakemake
workflow management system, it can be deployed on various
architectures, from single to multicore and from workstation to
computer clusters and grids. It is also flexible since users can easily
change parameters and/or add new rules.

Results: Using termite gut metagenomic datasets, we showed that
SnakeMAGs is slower but allowed the recovery of more MAGs
encompassing more diverse phyla compared to another similar
workflow named ATLAS.

Conclusions: Overall, it should make the reconstruction of MAGs
more accessible to microbiologists. SnakeMAGs as well as test files and
an extended tutorial are available at
https://github.com/Nachida08/SnakeMAGs.
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Introduction

Over the last years, microbial ecology has progressively made the transition from gene-centric to genome-centric
analyses,' allowing the clear assignment of (sometimes novel) microbial taxa to specific functions and metabolisms.”™
Indeed, technical and technological progresses such as binning methods applied to metagenomics,® single-cell genome
sequencing’ as well as high-throughput cultivation methods® have contributed to the continuing and exponential increase
of available prokaryotic genomes.’ This is particularly true for metagenomics that offers the possibility to reconstruct
metagenome-assembled genomes (MAGs) on a large scale and from various environments, and thus has generated a huge

: 10,11
amount of new prokaryotic genomes.

Although the use of MAGs in microbial ecology is becoming a common practice nowadays, processing raw metagenomic
reads up to genome reconstruction involves various steps and software which can represent a major technical obstacle,
especially for non-specialists. To face this problem, several workflows such as MetaWRAP,'” its Snakemake version called
SnakeWRAP,'* ATLAS'* and more recently MAGNETO,'” have been developed to automatically reconstruct genomes
from metagenomes. However, these workflows contain various modules and perform more tasks than only generating
MAGs. For instance, they will taxonomically assign the metagenomic reads, create gene catalog or perform functional
annotations. They rely on numerous dependencies, require significant computational resources and regenerate a lot of
outputs which are not essential to most research projects. To simplify this procedure and make it more accessible while
remaining efficient, reproducible and biologically relevant, we developed with the popular Snakemake workflow man-
agement system, ' © a configurable and easy-to-use workflow called SnakeMAGs to reconstruct MAGs in just a few steps. It
integrates state-of-the-art bioinformatic tools to sequentially perform from Illumina raw reads: quality filtering of the reads,
adapter trimming, an optional step of host sequence removal, assembly of the reads, binning of the contigs, quality
assessment of the bins, taxonomic classification of the MAGs and estimation of the relative abundance of these MAGs.

Methods

Creation

Our tool was built by integrating a set of software needed to process metagenomic datasets, utilizing Snakemake. There
are no additional equations/maths needed to recreate this tool.

Implementation

The workflow has been developed with the workflow management system Snakemake v7.0.0'® based on the Python
language. Snakemake enables reproducible and scalable data analyses as well as an independent management of the
required software within a workflow. SnakeMAGs is composed of two main files:

The Snakefile, named “SnakeMAGs.smk”, contains the workflow script. It is divided into successive rules which
correspond to individual steps. Our workflow includes a total of 15 distinct rules. Each rule requires input files and relies
on a single software installed independently when starting the workflow in a dedicated conda v4.12.0 environment. At the
end of each rule, output files will be generated in a dedicated folder, as well as a log file (stored in the logs folder)
summarizing the events of the software run and a benchmark file (stored in the benchmarks folder) containing the central
processing unit (CPU) run time, the wall clock time and the maximum memory usage required to complete the rule.
Thanks to Snakemake wildcards, our rules are generalized, so one can process multiple datasets in parallel without having
to adjust the source code manually.

The configuration file,"” named “config.yaml”, is used to define some variable names (e.g. names of the input files), paths
(e.g. working directory, location of the reference databases), software parameters and computational resource allocations
(threads, memory) for each of the main steps.

To run the workflow, the user only requires Snakemake. It can be easily installed, for instance via Conda, as explained in
the GitHub repository:

conda create -n snakemake 7.0.0 snakemake=7.0.0

After that, the user will only have to edit the config file (an example is provided on the GitHub repository) and then run
SnakeMAGs:

#Example of command on a Slurm cluster

snakemake --snakefile SnakeMAGs.smk --cluster \
'sbatch -p <cluster partition> --mem -c \

-o "cluster logs/{wildcards} .{ rule} .{ jobid} .out" \
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-e "cluster logs/{wildcards} .{ rule} .{ jobid} .err" ' \

--jobs --use-conda --conda-frontend \

conda --conda-prefix/path/to/SnakeMAGs conda env/ \

--jobname "{ rule} .{ wildcards} .{ jobid} " --configfile/path/to/config.yaml

During the first use of the workflow, a dedicated Conda environment will be installed for each of the bioinformatic tool to
avoid conflict. Then the input files will be processed sequentially. Output files will be stored in eight dedicated folder:
logs, benchmarks, QC_fq (containing FASTQ files), Assembly, Binning, Bins_quality (all three containing FASTA
files), Classification (containing FASTA files and text files with the taxonomic information), and MAGs_abundances
(text files).

The workflow has been successfully used on a workstation with Ubuntu 22.04 as well as on high-performance computer
clusters with Slurm v18.08.7 and SGE v8.1.9.

Operation

The minimal system requirements to run the workflow will depend on the size of the metagenomic dataset. Small datasets
(e.g. the test files provided on the GitHub repository) have been successfully analyzed on a workstation with an Intel Xeon
Silver 4210, 2.20GHz (10 cores/20 threads) processor and 96GB of RAM. Larger datasets should be processed on cluster
computing or within a high-performance infrastructure. For instance, performance evaluation of publicly available

/ Metagenomic reads /
v

Quality control

Quiality filtering (iu-filter-quality-minoche)

Adapter trimming (Trimmomatic)

Host reads filtering (optional)

v

/ QC reads /

y
Assembly (MEGAHIT)

1]
/ High quality scaffolds /
v

Genomic binning (MetaBAT2)
v

Quality assessment (CheckM)

MAGs

Taxonomic classification MAG abundances
(GTDB-tk) (CoverM)

Figure 1. Directed acyclic graph describing the main steps performed by SnakeMAGs. The names of the software
used for each step are showed in parentheses.
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metagenomes (see below) was performed on a computer cluster under CentOS Linux release 7.4.1708 distribution with
Slurm 18.08.7, on a node possessing an Intel Xeon CPU E7-8890 v4, 2.20GHz (96 cores/192 threads) and 512 GB RAM.

SnakeMAGs integrates a series of bioinformatic tools to sequentially perform from Illumina raw reads: quality filtering of
the reads with illumina-utils v2.12,'” adapter trimming with Trimmomatic v0.39'® (RRID:SCR_011848), an optional
step of host sequence removal (e.g. animal or plant sequences) with Bowtie2 v2.4.5'? (RRID:SCR_016368), assembly of
the reads with MEGAHIT v1.2.9”° (RRID:SCR_018551), binning of the contigs with MetaBAT2 v2.15' (RRID:
SCR_019134), quality assessment of the bins with CheckM v1.1.3?” (RRID:SCR_016646), classification of the MAGs
with GTDB-Tk v2.1.0>* (RRID:SCR_019136) and estimation of the relative abundance of these MAGs with CoverM
v0.6.1. An overview of the workflow is presented in Figure 1.

Use cases

To demonstrate the benefits and potential of our workflow, we compared it to another Snakemake workflow named
ATLAS v2.9.1."* To produce a fair comparison, ATLAS was run with the MEGAHIT assembler, without co-binning and
dereplicating only 100% similar MAGs. To test these two workflows, we downloaded and analyzed ten publicly available
termite gut metagenomes (accession numbers: SRR10402454; SRR14739927; SRR8296321; SRR8296327;
SRR8296329; SRR8296337; SRR8296343; DRR097505; SRR7466794; SRR7466795) from five studies”* and
belonging to ten different termite species.

SnakeMAGs requires only a limited number of inputs files: the raw metagenomic reads in FASTQ format from the
10 above-mentioned metagenomes, a FASTA file containing the adapter sequences,”’ a YAML configuration file
specifying the variable names, paths and computational resource allocations (available on the GitHub repository and on
Zenodo), and here since we worked with host-associated metagenomes a FASTA file containing the termite genome
sequences.”’ Regarding the outputs, SnakeMAGs produced quality-controlled FASTQ files without adapters nor termite
sequences, in the QC_fq folder. Then the reads assembled into contigs and scaffolds (FASTA files) were saved in the
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Figure 2. Comparison of the performance of SnakeMAGs v1.0.0 with another workflow, namely ATLAS v2.9.1"*
using 10 termite gut metagenomes. A. CPU time (in seconds) required to process each metagenome. B. Number of
MAGs reconstructed from each metagenome. On both boxplots, gray lines link the result obtained with ATLAS and
the one obtained with SnakeMAGs for each of the 10 analyzed termite metagenomes. C. Number of bacterial MAGs at
the phylum level recovered from each workflow.
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Assembly folder. Products of the binning procedure were stored in the Binning folder. Bins with >50% completeness and
<10% contamination (according to CheckM) were considered as MAGs and stored in the Bins_quality folder.
Subsequently, the results of the MAGs classification and relative abundance estimation were sent to the Classification
and MAGs_abundances folders, respectively. ATLAS requires similar input files and produces, among others, similar
outputs files.

ATLAS appeared to be faster than SnakeMAGs to reconstruct MAGs from metagenomes (Figure 2A). However,
SnakeMAGs always recovered more MAGs (>50% completeness and <10% contamination according to CheckM) per
metagenome or at least as much as ATLAS (Figure 2B). From the ten metagenomes, SnakeMAGs produced a total of
65 MAGs while ATLAS generated only 37 MAGs. Additionally, SnakeMAGs was able to recover MAGs encompassing
a higher diversity of bacterial phyla (n = 15 phyla) compared to ATLAS (n = 11 phyla). Only one phylum, namely
Patescibacteria, represented by a single MAG was recovered by ATLAS and not by SnakeMAGs. On the contrary,
ATLAS failed to reconstruct MAGs belonging to Verrucomicrobiota, Planctomycetota, Synergistota, Elusimicrobiota
and Acidobacteriota when SnakeMAGs succeeded (Figure 2C).

Discussion

Using metagenomic datasets from the gut of various termite species, our analyses revealed that while being slower,
SnakeMAGs allowed the recovery of more MAGs encompassing more diverse phyla compared to ATLAS, another
similar Snakemake workflow. More importantly our results showed that SnakeMAGs was able to recover MAGs
encompassing the major bacterial phyla found in termite guts,””" and that some of these phyla were not recovered
by ATLAS. Indeed, taxa belonging to Verrucomicrobiota,”" Planctomycetota,””> Synergistota,” Elusimicrobiota™
and Acidobacteriota™*® have been repeatedly found in the gut of various termite species. As such, they would represent
relevant targets for genome-centric analyses of the termite gut microbiota. Therefore, we showed that SnakeMAGs has the
potential to retrieve quantitatively more genomic information from metagenomes but also to extract genomic features of
biological interest.

Thanks to the inherent flexibility of Snakemake, SnakeMAGs offers the possibility to the users to easily tune the
parameters of the workflow (e. g. resource allocations for each rule, options of a specific tools) to adapt their analysis to the
datasets and to the computational infrastructure. Additionally, advanced users will have the opportunity to edit or add new
rules to the workflow. Regarding the future of SnakeMAGs, several avenues will be considered for the next versions of the
workflow. Firstly, the workflow could give more freedom to the users by offering the choice of different tools to perform
the same task (e.g. different trimming, assembly or binning software). Secondly, with the current emergence of
metagenomic datasets generated with long-read DNA sequencing,”’ it might be relevant to adjust our workflow for
long-read sequencing technology by including specific bioinformatic tools for this technology.”® Meanwhile, since the
majority of the metagenomic datasets have been and are still currently generated with Illumina short-read technology,
SnakeMAGs can be widely used to explore the genomic content of various ecosystems via metagenomics.

Software availability
Source code available from: https:/github.com/Nachida08/SnakeMAGs

Archived source code at time of publication: https:/doi.org/10.528 1/zenodo.7334838.%
License: CeCILL v2.1

Data availability

Source data

Termite genome references used for removing host sequences and their Bowtie2 index are available at: https://zenodo.
org/record/6908287#.Y 1JLANJBzUR

The termite gut metagenomes analyzed in the present study are available on NCBI with the following accession numbers:
SRR10402454; SRR14739927; SRR8296321; SRR8296327; SRR8296329; SRR8296337; SRR8296343;
DRR097505; SRR7466794; SRR7466795.

Underlying data
Zenodo. Reconstruction of prokaryotic genomes from ten termite gut metagenomes using two distinct workflows:
SnakeMAGs and ATLAS: https://doi.org/10.5281/zenodo.7334397.%°

- SnakeMAGs_config.yaml (The configuration file used to analyze the 10 termite gut metagenomes with
SnakeMAGs)
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- ATLAS_config.yaml (The configuration file used to analyze the 10 termite gut metagenomes with ATLAS)

- MAGs_SnakeMAGs.zip (A zipped folder containing the genomes of the 65 MAGs reconstructed with

SnakeMAGs)

- MAGs_ATLAS.zip (A zipped folder containing the genomes of the 37 MAGs reconstructed with ATLAS)

- taxonomic_assignment_MAGs.csv (A text file containing the taxonomic assignment of all the MAGs recon-

structed by both workflows)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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